Serveur d'exploration sur la grippe en Espagne

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Sequential detection of influenza epidemics by the Kolmogorov-Smirnov test.

Identifieur interne : 000300 ( Main/Exploration ); précédent : 000299; suivant : 000301

Sequential detection of influenza epidemics by the Kolmogorov-Smirnov test.

Auteurs : Pau Closas [Espagne] ; Ermengol Coma ; Leonardo Méndez

Source :

RBID : pubmed:23031321

Descripteurs français

English descriptors

Abstract

BACKGROUND

Influenza is a well known and common human respiratory infection, causing significant morbidity and mortality every year. Despite Influenza variability, fast and reliable outbreak detection is required for health resource planning. Clinical health records, as published by the Diagnosticat database in Catalonia, host useful data for probabilistic detection of influenza outbreaks.

METHODS

This paper proposes a statistical method to detect influenza epidemic activity. Non-epidemic incidence rates are modeled against the exponential distribution, and the maximum likelihood estimate for the decaying factor λ is calculated. The sequential detection algorithm updates the parameter as new data becomes available. Binary epidemic detection of weekly incidence rates is assessed by Kolmogorov-Smirnov test on the absolute difference between the empirical and the cumulative density function of the estimated exponential distribution with significance level 0 ≤ α ≤ 1.

RESULTS

The main advantage with respect to other approaches is the adoption of a statistically meaningful test, which provides an indicator of epidemic activity with an associated probability. The detection algorithm was initiated with parameter λ0 = 3.8617 estimated from the training sequence (corresponding to non-epidemic incidence rates of the 2008-2009 influenza season) and sequentially updated. Kolmogorov-Smirnov test detected the following weeks as epidemic for each influenza season: 50-10 (2008-2009 season), 38-50 (2009-2010 season), weeks 50-9 (2010-2011 season) and weeks 3 to 12 for the current 2011-2012 season.

CONCLUSIONS

Real medical data was used to assess the validity of the approach, as well as to construct a realistic statistical model of weekly influenza incidence rates in non-epidemic periods. For the tested data, the results confirmed the ability of the algorithm to detect the start and the end of epidemic periods. In general, the proposed test could be applied to other data sets to quickly detect influenza outbreaks. The sequential structure of the test makes it suitable for implementation in many platforms at a low computational cost without requiring to store large data sets.


DOI: 10.1186/1472-6947-12-112
PubMed: 23031321
PubMed Central: PMC3557152


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Sequential detection of influenza epidemics by the Kolmogorov-Smirnov test.</title>
<author>
<name sortKey="Closas, Pau" sort="Closas, Pau" uniqKey="Closas P" first="Pau" last="Closas">Pau Closas</name>
<affiliation wicri:level="3">
<nlm:affiliation>Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), Av. Carl Friedrich Gauss 7, 08860 Castelldefels, Barcelona, Spain. pclosas@cttc.cat</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), Av. Carl Friedrich Gauss 7, 08860 Castelldefels, Barcelona</wicri:regionArea>
<placeName>
<settlement type="city">Barcelone</settlement>
<region nuts="2" type="region">Catalogne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Coma, Ermengol" sort="Coma, Ermengol" uniqKey="Coma E" first="Ermengol" last="Coma">Ermengol Coma</name>
</author>
<author>
<name sortKey="Mendez, Leonardo" sort="Mendez, Leonardo" uniqKey="Mendez L" first="Leonardo" last="Méndez">Leonardo Méndez</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:23031321</idno>
<idno type="pmid">23031321</idno>
<idno type="doi">10.1186/1472-6947-12-112</idno>
<idno type="pmc">PMC3557152</idno>
<idno type="wicri:Area/Main/Corpus">00276</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">00276</idno>
<idno type="wicri:Area/Main/Curation">000276</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000276</idno>
<idno type="wicri:Area/Main/Exploration">000276</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Sequential detection of influenza epidemics by the Kolmogorov-Smirnov test.</title>
<author>
<name sortKey="Closas, Pau" sort="Closas, Pau" uniqKey="Closas P" first="Pau" last="Closas">Pau Closas</name>
<affiliation wicri:level="3">
<nlm:affiliation>Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), Av. Carl Friedrich Gauss 7, 08860 Castelldefels, Barcelona, Spain. pclosas@cttc.cat</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), Av. Carl Friedrich Gauss 7, 08860 Castelldefels, Barcelona</wicri:regionArea>
<placeName>
<settlement type="city">Barcelone</settlement>
<region nuts="2" type="region">Catalogne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Coma, Ermengol" sort="Coma, Ermengol" uniqKey="Coma E" first="Ermengol" last="Coma">Ermengol Coma</name>
</author>
<author>
<name sortKey="Mendez, Leonardo" sort="Mendez, Leonardo" uniqKey="Mendez L" first="Leonardo" last="Méndez">Leonardo Méndez</name>
</author>
</analytic>
<series>
<title level="j">BMC medical informatics and decision making</title>
<idno type="eISSN">1472-6947</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Epidemics (statistics & numerical data)</term>
<term>Humans (MeSH)</term>
<term>Incidence (MeSH)</term>
<term>Influenza A Virus, H1N1 Subtype (isolation & purification)</term>
<term>Influenza, Human (diagnosis)</term>
<term>Influenza, Human (epidemiology)</term>
<term>Models, Statistical (MeSH)</term>
<term>Public Health Surveillance (methods)</term>
<term>Spain (epidemiology)</term>
<term>Statistics, Nonparametric (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Espagne (épidémiologie)</term>
<term>Grippe humaine (diagnostic)</term>
<term>Grippe humaine (épidémiologie)</term>
<term>Humains (MeSH)</term>
<term>Incidence (MeSH)</term>
<term>Modèles statistiques (MeSH)</term>
<term>Sous-type H1N1 du virus de la grippe A (isolement et purification)</term>
<term>Statistique non paramétrique (MeSH)</term>
<term>Surveillance de la santé publique (méthodes)</term>
<term>Épidémies (statistiques et données numériques)</term>
</keywords>
<keywords scheme="MESH" type="geographic" qualifier="epidemiology" xml:lang="en">
<term>Spain</term>
</keywords>
<keywords scheme="MESH" qualifier="diagnosis" xml:lang="en">
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="diagnostic" xml:lang="fr">
<term>Grippe humaine</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Influenza A Virus, H1N1 Subtype</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Sous-type H1N1 du virus de la grippe A</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Public Health Surveillance</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Surveillance de la santé publique</term>
</keywords>
<keywords scheme="MESH" qualifier="statistics & numerical data" xml:lang="en">
<term>Epidemics</term>
</keywords>
<keywords scheme="MESH" qualifier="statistiques et données numériques" xml:lang="fr">
<term>Épidémies</term>
</keywords>
<keywords scheme="MESH" qualifier="épidémiologie" xml:lang="fr">
<term>Espagne</term>
<term>Grippe humaine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humans</term>
<term>Incidence</term>
<term>Models, Statistical</term>
<term>Statistics, Nonparametric</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Humains</term>
<term>Incidence</term>
<term>Modèles statistiques</term>
<term>Statistique non paramétrique</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>Espagne</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Influenza is a well known and common human respiratory infection, causing significant morbidity and mortality every year. Despite Influenza variability, fast and reliable outbreak detection is required for health resource planning. Clinical health records, as published by the Diagnosticat database in Catalonia, host useful data for probabilistic detection of influenza outbreaks.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>This paper proposes a statistical method to detect influenza epidemic activity. Non-epidemic incidence rates are modeled against the exponential distribution, and the maximum likelihood estimate for the decaying factor λ is calculated. The sequential detection algorithm updates the parameter as new data becomes available. Binary epidemic detection of weekly incidence rates is assessed by Kolmogorov-Smirnov test on the absolute difference between the empirical and the cumulative density function of the estimated exponential distribution with significance level 0 ≤ α ≤ 1.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>The main advantage with respect to other approaches is the adoption of a statistically meaningful test, which provides an indicator of epidemic activity with an associated probability. The detection algorithm was initiated with parameter λ0 = 3.8617 estimated from the training sequence (corresponding to non-epidemic incidence rates of the 2008-2009 influenza season) and sequentially updated. Kolmogorov-Smirnov test detected the following weeks as epidemic for each influenza season: 50-10 (2008-2009 season), 38-50 (2009-2010 season), weeks 50-9 (2010-2011 season) and weeks 3 to 12 for the current 2011-2012 season.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Real medical data was used to assess the validity of the approach, as well as to construct a realistic statistical model of weekly influenza incidence rates in non-epidemic periods. For the tested data, the results confirmed the ability of the algorithm to detect the start and the end of epidemic periods. In general, the proposed test could be applied to other data sets to quickly detect influenza outbreaks. The sequential structure of the test makes it suitable for implementation in many platforms at a low computational cost without requiring to store large data sets.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23031321</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>05</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1472-6947</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<PubDate>
<Year>2012</Year>
<Month>Oct</Month>
<Day>03</Day>
</PubDate>
</JournalIssue>
<Title>BMC medical informatics and decision making</Title>
<ISOAbbreviation>BMC Med Inform Decis Mak</ISOAbbreviation>
</Journal>
<ArticleTitle>Sequential detection of influenza epidemics by the Kolmogorov-Smirnov test.</ArticleTitle>
<Pagination>
<MedlinePgn>112</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1472-6947-12-112</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Influenza is a well known and common human respiratory infection, causing significant morbidity and mortality every year. Despite Influenza variability, fast and reliable outbreak detection is required for health resource planning. Clinical health records, as published by the Diagnosticat database in Catalonia, host useful data for probabilistic detection of influenza outbreaks.</AbstractText>
<AbstractText Label="METHODS" NlmCategory="METHODS">This paper proposes a statistical method to detect influenza epidemic activity. Non-epidemic incidence rates are modeled against the exponential distribution, and the maximum likelihood estimate for the decaying factor λ is calculated. The sequential detection algorithm updates the parameter as new data becomes available. Binary epidemic detection of weekly incidence rates is assessed by Kolmogorov-Smirnov test on the absolute difference between the empirical and the cumulative density function of the estimated exponential distribution with significance level 0 ≤ α ≤ 1.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">The main advantage with respect to other approaches is the adoption of a statistically meaningful test, which provides an indicator of epidemic activity with an associated probability. The detection algorithm was initiated with parameter λ0 = 3.8617 estimated from the training sequence (corresponding to non-epidemic incidence rates of the 2008-2009 influenza season) and sequentially updated. Kolmogorov-Smirnov test detected the following weeks as epidemic for each influenza season: 50-10 (2008-2009 season), 38-50 (2009-2010 season), weeks 50-9 (2010-2011 season) and weeks 3 to 12 for the current 2011-2012 season.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Real medical data was used to assess the validity of the approach, as well as to construct a realistic statistical model of weekly influenza incidence rates in non-epidemic periods. For the tested data, the results confirmed the ability of the algorithm to detect the start and the end of epidemic periods. In general, the proposed test could be applied to other data sets to quickly detect influenza outbreaks. The sequential structure of the test makes it suitable for implementation in many platforms at a low computational cost without requiring to store large data sets.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Closas</LastName>
<ForeName>Pau</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), Av. Carl Friedrich Gauss 7, 08860 Castelldefels, Barcelona, Spain. pclosas@cttc.cat</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Coma</LastName>
<ForeName>Ermengol</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Méndez</LastName>
<ForeName>Leonardo</ForeName>
<Initials>L</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>10</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Med Inform Decis Mak</MedlineTA>
<NlmUniqueID>101088682</NlmUniqueID>
<ISSNLinking>1472-6947</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D058872" MajorTopicYN="N">Epidemics</DescriptorName>
<QualifierName UI="Q000706" MajorTopicYN="Y">statistics & numerical data</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015994" MajorTopicYN="N">Incidence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053118" MajorTopicYN="N">Influenza A Virus, H1N1 Subtype</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007251" MajorTopicYN="N">Influenza, Human</DescriptorName>
<QualifierName UI="Q000175" MajorTopicYN="Y">diagnosis</QualifierName>
<QualifierName UI="Q000453" MajorTopicYN="Y">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015233" MajorTopicYN="N">Models, Statistical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D062486" MajorTopicYN="N">Public Health Surveillance</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013030" MajorTopicYN="N" Type="Geographic">Spain</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018709" MajorTopicYN="Y">Statistics, Nonparametric</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>01</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>08</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>10</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>10</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>5</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23031321</ArticleId>
<ArticleId IdType="pii">1472-6947-12-112</ArticleId>
<ArticleId IdType="doi">10.1186/1472-6947-12-112</ArticleId>
<ArticleId IdType="pmc">PMC3557152</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Rev Esp Salud Publica. 2011 Jan-Feb;85(1):37-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21750841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Med Inform Decis Mak. 2010;10:37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20587013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(8):e23610</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21886802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Feb 19;457(7232):1012-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19020500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biom J. 2008 Feb;50(1):71-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17849383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Med Inform Decis Mak. 2007;7:29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17937786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epidemiol Infect. 2004 Dec;132(6):1167-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15635976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Public Health Rep. 1963 Jun;78(6):494-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19316455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMJ. 2009;338:b2425</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19525308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stat Med. 2008 Sep 30;27(22):4455-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18618414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Med Inform Decis Mak. 2009;9:36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19640304</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Espagne</li>
</country>
<region>
<li>Catalogne</li>
</region>
<settlement>
<li>Barcelone</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Coma, Ermengol" sort="Coma, Ermengol" uniqKey="Coma E" first="Ermengol" last="Coma">Ermengol Coma</name>
<name sortKey="Mendez, Leonardo" sort="Mendez, Leonardo" uniqKey="Mendez L" first="Leonardo" last="Méndez">Leonardo Méndez</name>
</noCountry>
<country name="Espagne">
<region name="Catalogne">
<name sortKey="Closas, Pau" sort="Closas, Pau" uniqKey="Closas P" first="Pau" last="Closas">Pau Closas</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/GrippeEspagneV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000300 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000300 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    GrippeEspagneV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23031321
   |texte=   Sequential detection of influenza epidemics by the Kolmogorov-Smirnov test.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23031321" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GrippeEspagneV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Sep 25 11:01:38 2020. Site generation: Sat Feb 13 17:38:04 2021